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THE AUTOCORRELATION AND JOINT DISTRIBUTION FUNCTIONS

OF THE SEQUENCES, ﬁ %, [ﬁ(w)z]

by

D. L. Jagerman

1. INTRODUCTION

The present-day extensive use of Monte Carlo procedures necessitates the
careful investigation of methods for the generation of random numbers. In its
simplest form, the underlying principle of all Monte Carlo procedures finds its

expression in the following theorem.1

THEOREM: Let (xj): be a sequence equidistributed over (0,1), and let £(x) be a
function Riemann integrable on (0,1); then

1
N
RAICH RS li/;f(x)dx .

Thus, the theorem states that sample averages approximate the value of an in-
tegral. It is to be noted that the only property of the sequence (xj)T employed
is its equidistribution.

In applications, one may employ several equidistributed sequences simul-
taneously; accordingly, new requirements may arise. The sequences may be employed,
for example, as bascs for decision, in which case it may be required that they
be independent. Thus. depending on the Monte Carlo problem considered, equi-

distributed sequences may be required to possess other random-number character-
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istics. Let the sequences (xj):, (xj+‘); be designated respectively by x,
x(T), in which 7 is a non-zero integer, then an additional desirable character-
istic is the statistical independence of x, x(T). A sequence exhibiting such
characteristics is ({ajz])? in which O is an irrational numbcr.2 The symbol ’
(x) is employed to designate the fractional part of x.

However, from the viewpoint of the practical utilization of the sequence
suggested above by means of a digital computer, it is necessary to replace
by a rational number, and, hence, to lose some of the precision with which the
characteristics discussed above are satisfied. Accordingly, the sequences which

will be studied are
x = (@92, <) o (B2t

The integers a, m are taken relatively prime. Of particular interest will be
the deviation of the characteriastics of these sequences from the ideal random-

number characteristics.

Let p(x) be given by p(x) --,‘];‘ - {x}; then the autocorrelation function

¥(T) of a sequence (xj)T is defined by

v = e ¢ e otx,

For the sequence to be studied, this takes the form

=1
v = 2 (Eee 1 ety

()

AR}
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It will be shown that, uniformly in 7 for the range
1<1t< Jm ’

the autocorrelation function is small; that is, quantatively,

1
v | <n 3@ +V2)"® 1 w30 - 2™ 1l

provided (a,m) = 1 and m > 36. The function v(m) is the number of distinct
prime divisors of m. Thus, the sequence ({% jzl):'l is approximately uncorrelated.
Let Ha(x) be given by Ha(x) = 0+ p(x) - p(x-Q); then the joint distribution

function G(x,B) of the sequences x, x(T) is given by

oo = 2 d Bu oo i, -

o

For the sequence ({ﬁ o

, this takes the form
o(@® = 1 (G B KEwnd .

It will be shown that, uniformly in 7 for the same range stated above, and under

the same conditions on a, m,

N j—

l6to,B) 08| <m 2 (2 +42)"® ¢ 10? w468 1n ) .

Thus, the sequences ((% jzl)ﬁi}, ([%(j+1)2])2'1 are approximately independently

equidistributed over (0,1).



March 15, 1963 4 T™-1042/203/00

The above enumerated properties show the possible applicability of the

Zl)m-l

0 ((ﬁ(j+4)2)):'1 as random numbers in Monte Carlo procedures.

sequences ([& h|
However, an important question is the behavior, from the viewpoint of random-
number characteristics, of consecutive portions of the complete sequences. This

is being studied by the author, and an investigation of the question will appear

in another paper,

2. ANALYTICAL DISCUSSION

The proofs of the main theorems require the establishment of several lemmas.

Lemma 1: t>1, |n| <1

sin 2xhx 1
m> p(x) = & rmte— min (1 s,
@ 3 <hge ! ! el

in which |[x| denotes the distance from x to the nearest integer. It is under-

stood that when x is an integer, the estimate 1 is used.

Proof: The Fourier series for p(x) is
sin 2rhx |
p(x) = & RO V)

hence, it may be necessary to establish

sin 2rhx 1
S————— < i 1 ——— .
I min (L 2 2

The following standard theorem derived from Abel's transformation of series will

be used:
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PRSI ES

L < (3)

’*"zg'ﬂ‘zbzlsﬁd"'

Also standard is the following estimate:

‘pgn sin 2xpx

Applying the inequalities of Equations (3) and (4), one has

1
T “

<

sin 2<hx 1 1
Iét“fm" S (el DT < Znelall S

If 2nt|x|| > 1, then Equation (2) has been established. Consider now the case

2ntllx|l < 1; then

sin 2nhx _ & sin 2xhx gin 27hx
Wt e A P ©
Thus
2in_2rhx 1 sin 2shx
sin 2nhx | 1
>t xh z3 + ll < E <t -2
€))
L losn 2mnid] . 1 11
sy+ o bl Goopecatan.

Equation (2) is now established. The Fourier series for p(x) does not equal

p(x) when x is an integer; however, with the understanding stated in the lemma,

the lemma remains correct also in this case.
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s 8in 2shx
h

Lemma 2: .15 <t 7h 2

Proof: One has

sin 2nhx = R sin 2rhx sin 2nhx
1<f<e” a1l m Be  wb ®
Hence,
5 sin 2-hx 1 sin 2xhx 3
|15h5c 7h S22t | & ~ m |2 ®

The inequality of Lemma 1 was used.

Lemma 3: t>1, |n] <1

sin 2gxhx * sin 2nfy +

t 1< % <t 2

= o)) = T
n hi

1<

IN

-;-n[min (1, E:Sﬂ;n-) + min (1, -u—:'m)] .

Proof: Use of Lemma 1 yields
in 2xhx ¢ sin 2n4
x - 5 T 8in Znax - 8in Znby
p(x)p(y) 1<hce 1<Ts<t oy +
sin 2rhx 1
) —~—=—— . min (1, =) +
T1<hge m G 2yl

(10)

sin 2ndy 1
e x4 min (1, 2:t||x") +

=
=M

-
IN
IA
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1 1
n2 min (1, m) min (1, m) .

Lemma 2 allows one to write

2

T 8in 2xhx - sin 2niy +
L<t n°hi

= z
p(x)o(y) 5

1shge 1<

3 [ 1 ._.._1
= flmin (1, =) + min (1 ]+ 11
2 Mmin (1, 2 > 2wyl an

2 1 1
in (1, ™) min (1 .
R P

Observing that

1 1 1
min (1, ;;—tlT;(TI-) min (1, _——Zntllyll) < min (1, m“t " ) £
(12)
? ant[x| 2ntllyl

the lemma follows.

Let £(J), 8(J) be given functions of the integral variable j. Define e(x)

by

ex) = QL2 , (13)
R by

Re % o DGO, (14)
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(15)

(16)

5 cos 2x(hx - £y) .
2 ht

March 15, 1963 8
Sh,l by
S - z e(hf + 4
WEBDEDRCC ORI
and Sf by
S = £ min(l, ———) ;
f a<jy<b 2nell £l
then
Lemma 4: t>1
—~ |q<, .2 y  Lnadl, 1
a2 lshge 1SSt 25
Proof; Observing that
sin 2rhx sin 2nly = % cos 2x(hx - 2y) - % cos 2nlhx + £y) , (17)
one obtains from Lemma 3,
p(X)p(y)--L' b
202 1Shgt 1Z2St
_13 5
2 lshst 12igte

cos Zughx + zx)
% ) + (18)

El 1 -1
> nmin (1, E;:ﬂ;ﬁ) + min (1, zﬂtﬂ;“)] .

()
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Replacing x by £(j), y by g(]), and summing with respect to j, Equation (18)

yields
R=-t 3z DR & £ cos 2x(hf(3) - 48(3)) -
22 1Sh<1l 1<p<tht a<cy<p
L ] z L z cos 2x(hf(3) + (19)
w2 1<h<t 1<e<thl a<y<y
5 S
8() +3 S, +3 8,
Thus
lR' < L % z L z cos 2x(hf(j) - £8(3))| +
m?1<h<te 1<p<ehfia<yi<h
L b} b L b cos 2xChf(j) + (20)
221<h<t 1<z<thlla<i<y
g(3)) | + S; + Sg
Since
z s 2n(hE(d) - ¢ <|s
a s j S bco ﬂ( (j) g(j)) g h’z J
(21)
. < ?5 pco8 27(hECY) + 28() | < [ 8y , |,

the lemma follows.
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For the sequence given by
x; = 297, @m =1, (22)
it is necessary to estimate
m=1

R = Ee@ 3% - o) oG’ - B, 23

in which @,B satisfy 0 <a <1, 0 <pB <Ll Let

(=24 -a, (26)
s() =22 - 8 ; (25)
then,
Lemma 5:
.sh ,| < Vomtortym
)
Proof: One has
-1
lsh,z e ni’ + 2 um D] (26)
Let
d = (h,2,m) ,
h! = h/d ,
27
L' = g/d , @n

m' = m/d ;
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then
m-l
Sh, j +
m’-l h!? 1
g, et 2 4oL (m)z)l :
Let
s = "E el 2 4 2L (1Y)
j-O mv mv 2
then
2az T

Ist| = z e( ~(h' + £1)3° + 2LT )

One has

Is12 = TE '::0 e + £ (a7 - 1h) 4+ LT
and

5112 = pget "R e + (s
Let

jek+v,

in which v is a new summation variable; then

|2 -1 m

|S’ v-O

e( St + 2yvioeChh + 2“"

™-1042/203/00

(28)

(29)

(30)

(3-K)) , (31)

= (3-K) . (32)

(33)

v) (34)



March 15, 1963 12

and hence,

m'-1

-1
512 < Lg%, o e (' + 20|

5= (h' + £',m'), b=

then

-1

ol 4 g 8
k§0 e(m—,-(h + 4Y)vk) = kEO e(-mT

Thus, one obtains

t-1
IS,|255"‘:§ 2ab

By direct summation, one has

:;i:.;le(i?—,b vk) =0, m" ,r 2abv
«m", n" | 2abv .
Since
(ab,m") = 1,

m"|2abv at most 25 times, and hence,

| 2 2

[s*]® < 25°m" = 25m* .

m'-1
0 I ko e VR -

™-1042/203/00

(35)

(36)

vk) =5 kEO e(;r,- vk) . (37)

(38)

(39)

(40)

(41)
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P2 ¥

Equations (28), (29), and (41) now yield

lsh . <dvoem' = Vppa2y = V28dm = Vam(h + £,m) . (42)
?
Lemma 5 yields a trivial estimate when applied to Sh b It will be
)
important to determine an accurate estimate for this quantity.
Lemma 6: 151’<!2'-E-, v<h<t, m>2t
= sh,-h =0 .
Proof: One has
ls, o = | "Ee@aiZ-(a+0y?)| = | “Eie2EE 5y (43)
'“h, =h =0 'm =0 m ‘

Since (a,m) = 1, the sum in Equation (43) is zero when m|2hT. One has, for

15_1’<2t

»y 1LSh<t, m>2¢,

2<2ht<2t1<m. (44)

Thus, m|2ht and consequently, Sh - 0.
?

Lemma 7: t21,1n>21:,1§_1'<;'—t
= |R| < Yn z £ L Jth+ z,m +
Jau2 1Sh<t 1<pgtehl
V ) E ZVth-Lm+s, +25
V22 lshge 1<pgeM SR
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Proof: The lemma follows immediately from Lemmas 4, 5, and 6.

Lemma 8: For t > 3, one has

(5.46 1n’t +

1 N
— <
S%S thz (h + l,m)

*uls

z
1<h<e 1

3.27 In t - lnm(2 +V2)'® ,

in which v(m) denotes the number of distinct prime divisors of m.

Proof: In abbreviation, define S as follows.
s-—*/-‘-“i = £ }le St + 2,m) . (45)
Jag® 1€h<t 1<g<t

Let h,! be restricted so that (h + £,m) = d; then

Vm 1
s==2 » J4 = T = (46
To? aln Clghse 1giges )
(h + g,m) = d
The set of integers h,Z for which (h + Z,m) = d is included in the set for
which d | h + £; hence
Vm 1 :
s < Ja > 5 o=, 47
=252 dfm 1<hgt 1<g<ths “n

d|h+e

All integers fall into d residue classes modulo d. Let r denote the integers

0,1,2,..,,d~1; then when h belongs to the residue class represented by r, ¢

A3 Y
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RE—.
#
s

belongs to the class in which d-r is a member. Let St denote the following

sum;

1
s = I s = 48
T 1<h<t 1<g<tehs’ “8)

he=r(mod d)

t=d-r(mod d)

and S'(d) denote

1
S'(d) = b z = 49
@ 1<h<t 1<g<ehe’ “
d| h+2
then
Jm
s < =2 Jd s'(d) (50)
Van? df; ’
dzl
s'(d) = & s, -
From the symmetry of the sum in Equation (48), it follows that
S, = Sq.p ? (51)
and hence,
(52)

S'(d) =S+ 2 T s_ .
° 1<r<d/2*t
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Setting h = ¢d and £/ = ed in which ¢ > 1, e > 1 are new independent

summation variables, one has

2 2
1 ALY 1
S°'?<15c25t/dc>542<15‘35t¢>' 3

Since, for t > 3,

t
z %<1+f93-1+1n:<21n: (54)
1<c<t 1 X ’
one obtains
2
s <41nt' (55)
o 2
d
For r satisfying 1 <r 5521- , let hmcd +rand £ = ed - r; thenh > 1 implies
c<0, £>1 implies e 2 1, and
§.< L _ ter : L _ t4r L (56)
r—oScST cd+r 1595Ted-r
One has
ter
1 1 d dx _1 1 t_1_ 1Int
05%‘5%;—! cd+r§r+L xd+r rrtalrrsirTT 57
Also, one has
L er d]:+r L tar d+:l-r5% L oter l.1 » (58)
1<es=F°© 0<es=F-1° 0<e<=E -le+;

)

R
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in which the inequality r < % was used; further,
t+r
1 T ! _ax
b —-—52+f <13+ 1Int<2.3 1n t.(59)
0<e<i ) o4l x+ L
- - d 'f (o] 2
Thus, one has
1 _231nt
1< L tir sar <4 (60)
e < ==
=®27q
Equations (56), (57), and (60) yield
s <23lne 231n%¢ .
r rd 2 . (61)
d
Equation (52) now takes the form
s,(d)<41n2 £,23%¢c 461t o 1 2)
dz d d 1<r S% r '
Since
2 2
4 1In"t 4 1In" t
L< , (63)
d
and
d
PP I T L TR DR
1srggr = , X Rz<:3tlam, (64)

in which the inequalities In 2 < .7 and d < m were used, one obtains
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2 L]
S'(d)<7'68d1n t+4.6 In(tl lnm' (65)

Thus, Equation (50) yields

Jm
\/—23‘(2

2 1
s < 7.68 In" t + 4.6 Int * lnm . 66
( )d?mrd (66)

Let 6(a) be a multiplicative function of the integral variable a, and let

o Q, Q

1 2 v
a=p Py e P (67)

be the canonical factorization of a; then the following identity holds3:

Z g(d) = T [1+6¢p) + e(pz) +..0+ 0009 . (68)
d[a pla

Employing Equation (68) with 6(d) = 1/ 'fd, a=m, one obtains

r L .o 1 1 R S
dlm-T; pim h +7; +( p)? ¥ * (Vp) ¢ 1. R
and hence,
Len n+-4 43 +...]-H—J—J-&—. (70)
d}‘:mT‘; plm o (V2 plm Vp -1

Since p > 2, one hasJ—p/(J-p -1)<2 +~/—2, and hence,

v{m)

1
S Tms e+ 1)
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Equations (66) and (71) now yield

Vm

21(2

s < (7.68 1n® t + 4.6 In t + Inm)(2 +32)*™@® | (72)

Finally, use of the inequality 1/ ~/.2 < .71 yields the result of the lemma.

Lemma 9: For t > 3, one has
—‘I"‘—z T z tTl-xl(h-z,m) <“L‘,L‘,‘ (8.52 1n® t +
Var? 1Shge 1g2ge B x
h¥ ¢

2.84 In t - 1nm)(2 +¥2)"® |

Proof: In abbreviation, define S by

~N(h - Z,m) . (73)

L
<¢ Bl

IA
"
-

IA

Jm 1

S = — d z z =, 74
NP afm 1<h<t 1<t he 4

¢(h -~ ¢g,m) =d

het
Define S?(d) by

1

§1(d) = z b = ;
(d) l<hee 1<hceh’ (75)

“dlh - ¢
hes
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then, since the class of integers satisfying (h - £/,m) = d 1s included in the

class d|h - £, one has

Vm

SSJsz dfde s1(d) . (76)

When h belongs to the residue class represented by r, then £ belongs to the

same residue class. Let Sr denote the following sum:

1
S = b b = 7
T 1<h<t 1<g<ths’ m
h =r (mod d)
£ =r (mod d)
h ¥ ¢
then
dal
S'(d) = rgosr. (78)

Setting h = cd, ¢ = ed, the inequalities 1 <h<t, 1< £<¢t imply 1< c < t/d,

1< e<t/d, and

— (79)

For 1<r<d, lethm=cd+r, £ =ed+r; then 1 <h<t, 1<£<t imply

0<c<iE 0<e<tE, and
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S = z z —_ . (80)
T g<cocc<lx 0< e<t=t (cd+r)(ed+r)
- = d - = d
cye
Due to the symmetry of the sum in Equation (80),
S_ <2 5 L 5 L (81)
r OSCS%E cd+r lsess_;_f_ ed+r
Equation (57) yields
1 1 in t
0 s E -<- _t_?;_!_ cd+r S T + d ’ (82)
further,
1 1 1 1 2 Int
T < b =<=(l+1lnt) <=—=— (83)
15e_<_t—;£ed+r dlSe_<_te d d ’
and hence,
s<41nt 41n2t 84
r rd 2 ' (84)
d
Since 1 < d <m and
d=11
r§1;<1+1nm, (85)
Equations (78) and (84) yield
121t , 41nct. Inm
$1(d) <~ + = (86)
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From Equations (76) and (86), one now has

Jm 2 1
§$<=——=—(12In"t+4Int: lnm) Z -— ., 87
J-sz d|m Jd

Equation (71) and the inequality 1/ ~/-2 < .71 yield the result of the lemma.

Lemma 10: (a,m) = 1, 0 < a<1l, 0<B<1l, m>2rt

= sf<3,2"(“‘) mlnm

v(m) m lnm

Sg < 3.2 ”
Proof: Consider, in the sum
m=1 1 1
Sf=j_omin(, PR ) I (88)
12 52 - o
regrouping the terms so that all j for which
2
aj*=r (modm), 0 <r<m (89)
constitute the sum Z‘.r; then
m-1 5
S¢ = &0 5 - (90)

a
m=2 p;... p:k (91)
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be the canonical factorization of m; then, by a standard theorem,3 the number

of j for which aj2 =r (mod m) is T T1 ‘os '1‘k where Tz is the number of solutions
Q

of aj2 = ¢ (mod plj) and T is the number of solutions of aj2 = r (mod 205. Also,

one has
T,<2, 1<2<k (92)
T< 4
Hence,
TT T, < 4.2% (93)
P S 4

and, since v(m) = k + 1,

TT ... T, < 2.7 (94)
Thus,
£ <2 2"® nin (1, —r—-l—-) ) (95)
I~ = ol
and hence,
sp < 2.2"®@ :';; min (1, ———) . (96)
= - of

The sum in Equation (96) will be estimated by consideration of four cases.

IE-ol =14+%-q, (97)
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and

Case 2:

One has

and

Case 3:

One has

z 1. min (1, lr ) <1+
0 < r < ma-3) 2xt(l + T - 0)
1
\m(a-"z') 1
f min (1 ——)dx,
o 2:t(1+-n;-a)
3 (98)
[ 1, —=—)d
<1+mJ min(,zﬂtu)u,
o
<1+m1nnt
nt
1 _r
--2-<-I;-(150.
r r
I= - dl =a-3, (99)
mo
1 1
z min (1, r)51+ min (1, x)t:lx,
0<rs<m 2nt(06--['n') o 2xt(a--';)
1
<1+n/ min (1, s==)du (100)
Jo ? 2ntu ’
<1+m1n2nt.
xt
1
0<<-a<7.
m -2

IZ- ol =% -a, 101)
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and
m
s in (1 L _vc1+f minQ yd
min (1, < min (1, X ,
ma < F<m 2xtE - Q) Jua 21t - o)
1
<1+ mfmin (1, E-;]'E;)du , (102)
o
<14+D l:tZr(t )
Case 4: l<-'i-oz<1.
——— 2 m
One has
r r
[lm-<)4}=1-m+a, (103)
and
by min (1, L - Yy <1+
m(a + %)<r<m 2ne(l - — 4 o)
m
f 1 min (1, 1 = )dx ,
m{a + '5) 2nt(l - ot o)
1 (104)
2 1
<14+ n:/; min (1, m)du,
<1+ ln nt )
nt
One has
v(m) 2m In rt  2m ln 2xt
S¢ < 2.2 (4 + — t Tt 1, (105)

and



March 15, 1963 26 ™-1042/203/00

v (m) m ln 2xt
S¢ < 8.2 (1 + — ]. (106)

Since m > 2nt, one has Iln 2xt < In m, and hence,

v (m) mlnm
S; < 8.2 (1 + —t 1. (107)

Also, since m ln m > 2xt, one has

v(im) m In m
s, < 12.2 e era (108)

Using the inequality n > 3 yields the result of the lemma. For the sum Sg, one

has

- -1
S = ?’; min (1, -a——i'i-—) = ';‘§0 min (1, —a—-lz——) (109)
& 12+ -p) | 12 3%l

and hence, the estimate obtained for Sf above applies also to Sg.

It is now possible to state the first main theorem.

THEOREM 1: (a,m) = 1, m> 36, 1<t <vm, 0<a<1,0<p<I1,

m-1
= | jgop(-:- jz-a)p(ﬁ(jn)z-g)] <vm [-g- @ +¥2)"™ 1020 4+ 30.2"@® 14 0] .
Proof: Lemmas 7, 8, 9, and 10 yield
IR| <‘£‘;—‘ (13.98 1n? ¢ + 6.11 In t - Iln m](2 +42)" @
b
+ 15 2v(m) m ln m (110)

t

Since ‘2 > 9.85, one also has



‘0 March 15, 1963 27 ™-1042/203/00

IR| <vm [1.42 1% t +.621 In t + 1n m](2 +¥2)"'®

111)
v() mlnm (
+ 15.2 ol
Choose
1/,

t=ovm; (112)
then, since ln t <-%‘- Inm,

8| <Vm 3 2 +¥2)"® 102w+ 30.2°® 1na) . (113)

The conditions t > 3, m > 2xt are both met by the condition m > 36. Since
m/2t =vm, the condition 1 < T < m/2t becomes 1 < T <¥m. The theorem is now
established.

The autocorrelation function of the sequence x, = {ﬁ j2] is obtained

3
immediately from Theorem 1 by setting @ = 0, B = 0, and recalling that y(1) =

R/m. Hence, one has

THEOREM 2: (a,m) = 1, m> 36, 1 < 7 <vm
= |y(1)]| < ;;2-[% (2 +J‘2)v(m) 1n?m+ 30.2v(m) In m] .

Consider the simultaneous Diophantine inequalities

01 <o 0B <p05s<n. (114)

Let the number of solutions of the inequalities be designated by T(x,B), then
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6(ayp) = HGE) (115)

is the joint distribution function of the sequences [i 12], (%(j+1)2]. If the
sequences [i 12], [i(j+4)2] were independently equidistributed over (0,1), ome
would have G(0,8) = 0f. It is the present object to determine the deviation of

G(q,p) from the desired joint distribution of. For this purpose, let
B (x) = a+p(x) - p(x - 0) ; (116)
then Ba(x) 1s a periodic function with period 1 and, within the initial period,

H(x) =1, 0<x<a,

117
=0, a<x<1.

In view of the above properties of Ha(x), the enumeration T(x,p) is given by
=1
(@) = (i 17 BEun? (118)
Bl a .2 m-1 g 2
Lesma 11: T(x,p) = 0Bm + B8 Zp( 379 -8 ZpQ S -0+
-1 -1
o Ep@und +a Fpdum? - 8 +
mil a 2, & 2, m=1 a 2 a 2
j_ch(m 1 e GO - Fp G 3T - o) p(C(3+N7) -
=1 -1
Tp@ D pdn? <o) + (Ep@ 9 - d pGue’ - B

Proof: Use Equations (116) and (113).
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Lemma 12: (a,m) =1, m> 36, 1<7<vVm, 0<a<1,0<p<]l,

-1 -1 -1
= 1,8 - ool <2 | Fp@ D]+ | Zp@ -l + | Fp -pyl +

J'm[% @ +v2)'™ 102 0y 120 - 2"® 1p ] .

Proof: Theorem 1 enables the estimation of the sums of products of the p=

functions to be effected. Also observing that

-1 -1

€ 1 =Epunmd , (119)
m=1 g 2 m-1 5 2

PAICE RN R CRTO RO (120)

the lemma follows.
In order to estimate the sum of the p-functions in Lemma 12, the following

lemmas are required.

Lemma 13: (a,m) = 1, 0< a< 1,

-1
= |‘;'§oe(l‘mi 12 - h)| <Vom(h,m) .
Proof: Let
(hym) = d ,
h
h' =2 (121)
m! -%' ’



March 15, 1963 30 ™-1042/203/00

and
S = ?_; (ha jz - ho) ; (122)
then
-1
sl = Iigped® D1 = o J5 et ] . (123)
One has

15|12 = a2 me-1 m"l h'a ;2 h'a 2

k§0 ( Y k%) =
(124)
1. 1.
Introduce a new summation variable v by
jo= ktv ; (125)
then
5% = &2 :é;l my ! o eEig R < o mégl | k_;lec--vkx,(lzs)
By direct summation, one obtains
:é;le(Zh 2vk) = 0, m'f2h'av ,
127)

=m', m'|2h'av .

Since (h'a,m') = 1, m'IZh'av if and only if m'|2v which may occur at most twice.

Hence,
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5% < 24%m' = 2md .
The lemma follows on taking the square root.
Lemma 14: (a,m) =1, 0<a<1,

m-l 4 2 N 2m
= |j§op(;.1 -9 <=2 1< i<

N

Proof: Use of Lemma 1 yields

m=l g .2
| EP G -al< B

-1
+?§omin (1,

Setting t = %Im and using Lemma 9, one obtains

0@ 12 - 0y < "%
j-Opm 1<h<1‘[nh j-O

The lemma now follows on employing Lemma 13.

Lemma 15: (aym) =1, 0<a<1l, m> 36

™-1042/203/00

(128)

a 2V +6vn 2™ 1w,

2

(129)

)
2xe]2 5% - a

B2 )| + 6vm2' ™10 m. (130)

= |';§;p(§ -] <3.92vn @ +v2)'™ 1.

Proof: One has
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p ] £, %J(h,m)-—:ﬂ r Va4 £, %5
"1g¢hgyVm dm  1<h<5Vm
(hym) = d
s oy Jg £ L
x 1 h*
dlm 1<h<zYm ™
d|h
Let h = cd; then
x28 Ja £, %<—“i‘“ £ J-l- £ %<
" 4m 1<h<zYm dln V¢ 1gc<3Vm

d|h

Jn(15+.27 Inm) £ T -
llldlm Jd

Use of Equation (71) now yields

Vom

T 1<h

IAD™M

1

5Vm

Since m > 36, one has
154+ .27 Inm<.312 lnm ,

and hence,

a3

T %J(h,m) <.312Vn @2 +¥2)'® 1na.
1shggVn

Lemma 14 now yields

LJmm <Va(.15 + .27 In w2 NVEN

32 ™-1042/203/00

(131)

(132)

(133)

(134)

€135)

(
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l?é;p(ﬁ 2. <.32Vm 2 +¥2)'® 1nm+ 6Vm2"™ 1. . (136)

Since 2/(2 +v2) < 1 and v(m) > 1, one has
312 2 +92)Y® 4 6.2"® < 3,92 (2 +42)"® (137)
This proves the lemma.

THEOREM 3: (a,m) = 1, m> 36, 1 < 7 <vm,

1

= |o(ep) - 8| <o’ 2+V2D)'® G 1n’n+ 88 1nm .

Proof: Lemmas 12,and 15 provide the following inequality.

1
lo(o,8) - 8l <m 15 (2 V2™ 102 5y 15,6802 +82)'® 4
(138)
120.2° ™) 15 ) .
Using the inequality
M < g2 +V)V ™ | (139)

The theorem follows.
Theorem 3 thus demonstrates that the sequences {i jz], [ﬁ(j+¢)2) are

approximately independently equidistributed over (0,1).
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